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Counting faces of nestohedra

Vladimir Grujić∗ and Tanja Stojadinović

Faculty of Mathematics, University of Belgrade, Serbia

Abstract. A new algebraic formula for the numbers of faces of nestohedra is obtained.
The enumerator function F(PB) of positive lattice points in interiors of maximal cones
of the normal fan of the nestohedron PB associated to a building set B is described as a
morphism from the certain combinatorial Hopf algebra of building sets to quasisym-
metric functions. We define the q-analog Fq(PB) and derive its determining recurrence
relations. The f -polynomial of the nestohedron PB appears as the principal specializa-
tion of the quasisymmetric function Fq(PB).
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1 Introduction

A generalized permutohedron Q is a convex polytope whose normal fan ΣQ is refined by
the reduced braid arrangement fan. This class of polytopes was introduced and studied
by Postnikov [6] and Postnikov, Reiner and Williams [7]. It includes the well known
subclasses associated to combinatorial objects such as graphical zonotopes, matroid base
polytopes and nestohedra. For a generalized permutohedron Q with the vertex set VertQ
let

F(Q) = ∑
v∈VertQ

∑
(i1,...,in)∈σ◦v∩Zn

+

xi1 · · · xin

be the enumerator function of positive lattice points in interiors of maximal cones σ◦v
of the normal fan ΣQ. This power series was introduced, and its main properties were
derived, by Billera, Jia and Reiner in [2, Section 9]. Let B be a building set and PB be
the associated nestohedron. In [4] it was shown that the correspondence B with F(PB)
coincides with the universal morphism from a certain combinatorial Hopf algebra of
building sets B to the combinatorial Hopf algebra of quasisymmetric functions QSym.

Similarly, Stanley’s chromatic symmetric function Ψ(Γ) of a simple graph Γ, which
is characterized in [1] as the image of Γ under the universal morphism from the chro-
matic Hopf algebra of graphs to symmetric functions can alternatively be obtained as
the enumerator function of positive lattice points of the normal fan of the corresponding
graphical zonotope ZΓ. In [5] it is proved that the f -polynomial of ZΓ appears as the
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principal specialization of the q-analog of Ψ(Γ) evaluated at −1, the result that general-
izes Stanley’s famous (−1)-color theorem for graphs. We show that the same is true for
nestohedra. For the appropriately defined q-analog Fq(PB) of the function F(PB) and its
principal specialization χq(B, m) = ps(Fq(PB))(m) we prove the following.

Theorem 1. Let PB be the nestohedron associated to a building set B on the ground set [n]. The
f -polynomial of PB is given by

f (PB, q) = (−1)nχ−q(B,−1).

2 Preliminaries

2.1 Constructions of nestohedra

We refer the reader to [7] for definitions and main properties of nestohedra. The nestohe-
dra are a class of simple polytopes described by the notion of building sets. A collection
of subsets B of a finite ground set V is a building set if
� {i} ∈ B for all i ∈ V and
� if I, J ∈ B and I ∩ J 6= ∅ then I ∪ J ∈ B.
A building set B is connected if V ∈ B. Let ∆n−1 = Conv{e1, . . . , en} be the standard

simplex in Rn. The nestohedron associated to a building set B on the ground set [n] is
the Minkowsky sum of simplices PB = ∑I∈B Conv{ei | i ∈ I}. Enumerate faces of ∆n−1

by subsets of [n] in a way that the face poset of ∆n−1 is isomorphic to the reverse Boolean
lattice on [n]. For a connected building set B the nestohedron PB is realized by succes-
sive truncations over faces of ∆n−1 encoded by a building set B in any nondecreasing
sequence of dimensions of faces. Recall that a truncation of a convex polytope P over
a face F ⊂ P is the polytope P \ F obtained by cutting P with a hyperplane HF which
divides vertices in F and vertices not in F in separated half-spaces. For a disconnected
building set B the associated nestohedron PB is the product of nestohedra corresponding
to components of B.

2.2 Hopf algebra B
Two building sets B1 and B2 are isomorphic if there is a bijection of their sets of vertices
f : V1 → V2 such that I ∈ B1 if and only if f (I) ∈ B2. The addition of building sets B1
and B2 on disjoint ground sets V1 and V2 is the building set B1 t B2 = {I ⊂ V1 t V2 |
I ∈ B1 or I ∈ B2}. For a building set B on V and a subset S ⊂ V the restriction
on S and the contraction of S from B are defined by B |S= {I ⊂ S | I ∈ B} and
B/S = {I ⊂ V \ S | I ∈ B or I ∪ S′ ∈ B for some S′ ⊂ S}. The building sets obtained
from B by restrictions and contractions are its minors. The set of all isomorphism classes
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of finite building sets linearly generates the vector space B over a field k. The space B
is a graded, commutative and non-cocommutative Hopf algebra with the multiplication
and the comultiplication

[B1] · [B2] = [B1 t B2] and ∆([B]) = ∑
S⊂V

[B |S]⊗ [B/S].

The grading gr([B]) is given by the cardinality of the ground set of B. A building set B
is connected if [B] is irreducible, i.e. it is not represented by an addition of two building
sets. Denote by c(B) the number of connected components of B.

The theory of combinatorial Hopf algebras is developed in [1]. An extensive sur-
vey of the theory of combinatorial Hopf algebras and quasisymmetric functions can be
found in [3]. We consider the combinatorial Hopf algebra (B, ζ) where ζ : B → k is a
multiplicative linear functional defined by ζ([B]) = 1 if B is discrete (consisting of only
singletons) and ζ([B]) = 0 otherwise. Let (QSym, ζQ) be the combinatorial Hopf algebra
of quasisymmetric functions in variables x1, x2, . . ., where the character ζQ is defined as
the evaluation map at x1 = 1 and xi = 0 for i > 1. It is linearly generated by monomial
quasisymmetric functions {Mα} which are indexed by compositions α of integers. There
is a unique morphism Ψ : (B, ζ)→ (QSym, ζQ) of combinatorial Hopf algebras given in
the monomial basis of quasismmetric functions by

Ψ([B]) = ∑
α|=gr(B)

ζα(B)Mα.

The coefficients ζα(B) have an enumerative meaning. Let L : ∅ ⊂ I1 ⊂ · · · ⊂ Ik = V be
a chain of subsets of the ground set [n]. Denote by |L| = k its length and by type(L) its
type which is a composition α = (i1, . . . , ik) such that for any 1 ≤ j ≤ k the set Ij \ Ij−1
has ij elements. We say that L is a splitting chain if all minors B |Ij /Ij−1 are discrete.
Then ζα(B) is exactly the number of all splitting chains of B of a given type α. For a
building set B on [n] the following identity holds ([4, Theorem 4.5])

F(PB) = Ψ([B]). (2.1)

The principal specialization of a quasisymmetric function F is an evaluation map

ps(F)(m) = F |x1=···=xm=1,xm+1=···=0 .

It defines an algebra morphism ps : QSym → k[m] into the polynomial algebra k[m].
Note that ps(Mα)(m) = ( m

k(α)), where k(α) is the length of a composition α. Define a
polynomial

χ(B, m) = ps(F(PB))(m) = ∑
α|=gr(B)

ζα(B)
(

m
k(α)

)
.
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Its value at m = −1 counts vertices of the nestohedron PB (see [4, Proposition 6.3] and
[2, Theorem 9.2] for the general statement for generalized permutohedra), that is,

χ(B,−1) = (−1)gr(B) f0(PB).

2.3 Graph-associahedra

A special class of building sets is produced by simple graphs. The graphical building set
B(Γ) on a graph Γ is the collection of all subsets of vertices such that induced subgraphs
are connected. The polytope PB(Γ) is called a graph-associahedron.

In [4] is considered the following Hopf algebra of graphs. Let G be a vector space
over the field k spanned by isomorphism classes of simple graphs. It is endowed with a
Hopf algebra structure by operations

[Γ1] · [Γ2] = [Γ1 t Γ2] and ∆([Γ]) = ∑
I⊂V

[Γ |I ]⊗ [Γ/I],

where Γ |I is the induced subgraph on I and Γ/I is the induced subgraph on V \ I with
additional edges uv for all pairs of vertices u, v /∈ I connected by edge paths through I.
The correspondence Γ 7→ B(Γ) induces a Hopf monomorphism from G to B.

2.4 q-analog of F(PB)

We extend the basic field k into the field of rational functions k(q) and define the char-
acter ζq : B → k(q) with ζq([B]) = qrk(B), where rk(B) = gr(B)− c(B). In analogy to the
identity (2.1), for a building set B on [n], we define

Fq(PB) = Ψq([B]), (2.2)

where Ψq : (B, ζq)→ (QSym, ζQ) is a unique morphism of combinatorial Hopf algebras
over k(q). The morphism Ψq is given by

Ψq([B]) = ∑
α|=gr(B)

(ζq)α(B)Mα.

The coefficient corresponding to a composition α = (i1, . . . , ik) |= n is determined by

(ζq)α(B) = ∑
L:type(L)=α

∏
j=1,k

q
rk(B|Ij /Ij−1) = ∑

L:type(L)=α

qrkB(L), (2.3)

where the sum is over all chains L : ∅ ⊂ I1 ⊂ . . . ⊂ Ik = V of the type α and rkB(L) =
∑j=1,k rk(B |Ij /Ij−1) is the sum of ranks of indicated minors. Thus

Fq(PB) = ∑
L

qrkB(L)Mtype(L), (2.4)
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where the sum is over all chains of the ground set [n]. The chains of [n] are in one-
to-one correspondence with set compositions of [n]. Recall that the face poset of the
permutohedron Pen−1 is antiisomorphic to the poset of set compositions of the ground
set [n] with refinements as the order relation. We conclude that Fq(PB) is completely
determined by the multiset of combinatorial data {rkB(F) | F ∈ Pen−1} associated to
faces of Pen−1. Define

χq(B, m) = ps(Fq(PB))(m) = ∑
L

(
m
|L|

)
qrkB(L),

which is a polynomial in m with coefficients in k(q). Specially, for m = −1 we have

χq(B,−1) = ∑
L
(−1)|L|qrkB(L).

We are ready to prove the main result of the paper.

3 Proof of Theorem 1

For a composition α = (a1, . . . , ak) and a positive integer r let (α, r) = (a1, . . . , ak, r).
Define a shifting operator F 7→ (F)r on QSym as the linear extension of the map given
on the monomial basis by Mα 7→ M(α,r). Specially (M∅)r = M(r) = xr

1 + xr
2 + · · · .

First we give some examples in favor of Theorem 1.

Example 1. The permutohedron Pen−1 = PB(Kn) is realized as the graph-associahedron
of the complete graph Kn. Since rkKn(L) = n− |L| for any chain L of subsets of [n] we
have by (2.4) that

Fq(Pen−1) = ∑
L

qn−|L|Mtype(L) = ∑
α|=n

(
n
α

)
qn−k(α)Mα.

Consequently by Theorem 1 we derive the well known fact

f (Pen−1, q) = ∑
α|=n

(
n
α

)
qn−k(α).

Example 2. For the building set B = {{1}, . . . , {n}, [n]} on [n] the corresponding nesto-
hedron is the (n− 1)-simplex PB = ∆n−1. Let L be a chain of the type type(L) = α |= n.
Obviously rkB(L) = l(α)− 1, where l(α) denotes the last component of the composition
α |= n. Therefore by (2.3) we have (ζq)α(B) = (n

α)q
l(α)−1, and consequently from (2.2)

Fq(∆n−1) = ∑
α|=n

(
n
α

)
ql(α)−1Mα.
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By rearranging summands according to last components of compositions we obtain

Fq(B) =
n

∑
k=1

(
n
k

)
qk−1 ∑

α|=n−k

(
n− k

α

)
M(α,k).

Taking into account that Mn
(1) = ∑α|=n (

n
α)Mα, for each n we have

Fq(∆n−1) =
n

∑
k=1

(
n
k

)
qk−1(Mn−k

(1) )k.

Theorem 1 gives the expected

f (∆n−1, q) =
n

∑
k=1

(
n
k

)
qk−1 =

(1 + q)n − 1
q

.

We use the following recurrence relations satisfied by f -polynomials of nestohedra.

Theorem 2 ([6, Theorem 7.11]). The f -polynomial f (B, q) of a nestohedron PB is determined
by the following recurrence relations

(1) f (•, q) = 1 for the singleton • = {{1}}.

(2) If B = B1 t B2 then f (B, q) = f (B1, q) f (B2, q).

(3) If B is connected then f (B, q) = ∑I [n] qn−|I|−1 f (B |I , q).

The next theorem shows that similar recurrence relations determine the quasisym-
metric function Fq(PB). This includes the special case q = 0 and B graphical building set
obtained in [4, Theorem 7.5].

Theorem 3. The quasisymmetric function Fq(B) = Fq(PB) is determined by the following re-
currence relations

(1) Fq(•) = M(1) for the singleton • = {{1}}.

(2) If B = B1 t B2 then Fq(B) = Fq(B1)Fq(B2).

(3) If B is connected then Fq(B) = ∑I [n] qn−|I|−1(Fq(B |I))n−|I|.

Proof. The assertions (1) and (2) are direct consequences of the definition (2.2) of Fq(B).
It remains to prove the assertion (3). Note that for connected B the contraction B/I
remains connected for each I ⊂ [n] and rk(B/I) = n− |I| − 1. If we rearrange the sum
in the expansion (2.4) according to predecessors of the maximal element in chains we
obtain
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Fq(B) = ∑
I([n]

qn−|I|−1 ∑
LI

qrkB|I (LI)M(type(LI),n−|I|),

where the last sum is over all chains LI of I. This leads, by repeated application of
equation (2.4) to the needed identity.

Now for the proof of Theorem 1 is sufficient to show that (−1)nχ−q(B,−1) satisfies
same recurrence relations as f (B, q), given in Theorem 2. But this is a direct consequence
of Theorem 3.
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